On Computing the Distribution Function for the Sum of Independent and Non-identical Random Indicators
نویسنده
چکیده
The Poisson binomial distribution is the distribution of the sum of independent and non-identical random indicators. Each indicator follows a Bernoulli distribution with individual success probability. When all success probabilities are equal, the Poisson binomial distribution is a binomial distribution. The Poisson binomial distribution has many applications in different areas such as reliability, survival analysis, survey sampling, econometrics, etc. The computing of the cumulative distribution function (cdf) of the Poisson binomial distribution, however, is not straightforward. Approximation methods such as the Poisson approximation and normal approximations have been used in literature. Recursive formulae also have been used to compute the cdf in some areas. In this paper, we present a simple derivation for an exact formula with a closed-form expression for the cdf of the Poisson binomial distribution. The derivation uses the discrete Fourier transform of the characteristic function of the distribution. We develop an algorithm for efficient implementation of the exact formula. Numerical studies were conducted to study the accuracy of the developed algorithm and the accuracy of approximation methods. We also studied the computational efficiency of different methods. The paper is concluded with a discussion on the use of different methods in practice and some suggestions for practitioners.
منابع مشابه
A Recursive Approximation Approach of non-iid Lognormal Random Variables Summation in Cellular Systems
Co-channel interference is a major factor in limiting the capacity and link quality in cellular communications. As the co-channel interference is modeled by lognormal distribution, sum of the co-channel interferences of neighboring cells is represented by the sum of lognormal Random Variables (RVs) which has no closed-form expression. Assuming independent, identically distributed (iid) RVs, the...
متن کاملAsymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملLongest Path in Networks of Queues in the Steady-State
Due to the importance of longest path analysis in networks of queues, we develop an analytical method for computing the steady-state distribution function of longest path in acyclic networks of queues. We assume the network consists of a number of queuing systems and each one has either one or infinite servers. The distribution function of service time is assumed to be exponential or Erlang. Fu...
متن کاملThe behavior of non-identical and dependent standby components in a coherent system
In this paper, a coherent system consisting of non-identical dependent active components and equipped with non-identical dependent standby components is considered. The main object of this study is the random quantity which account the number of surviving standby components when the system is failed. We represent the distribution function of the corresponding random variable in ter...
متن کاملDistribution Free Confidence Intervals for Quantiles Based on Extreme Order Statistics in a Multi-Sampling Plan
Extended Abstract. Let Xi1 ,..., Xini ,i=1,2,3,....,k be independent random samples from distribution $F^{alpha_i}$، i=1,...,k, where F is an absolutely continuous distribution function and $alpha_i>0$ Also, suppose that these samples are independent. Let Mi,ni and M'i,ni respectively, denote the maximum and minimum of the ith sa...
متن کامل